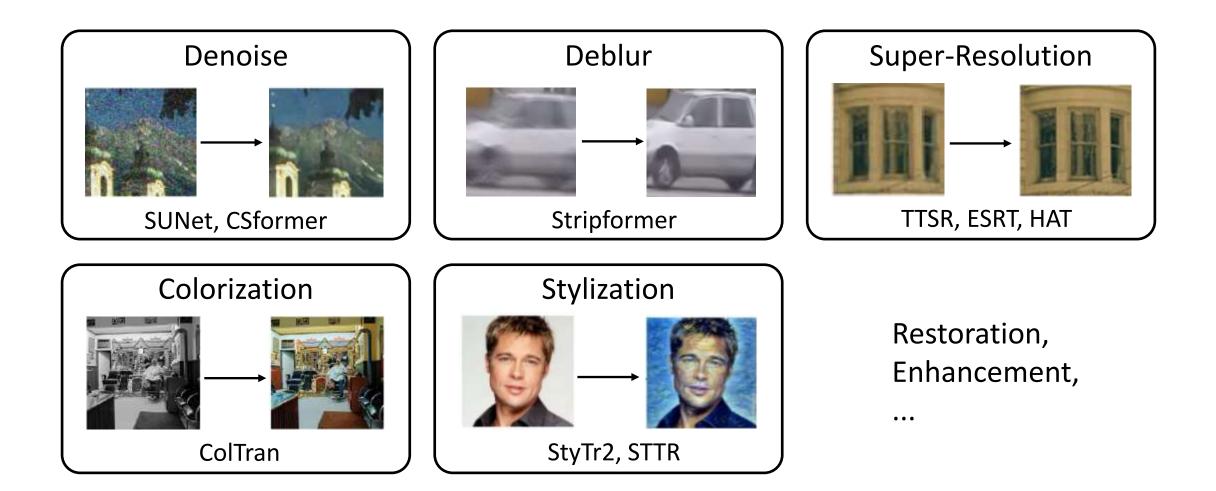
Transformer Design for Low-Level Vision Tasks

Huan Yang Microsoft Research Asia

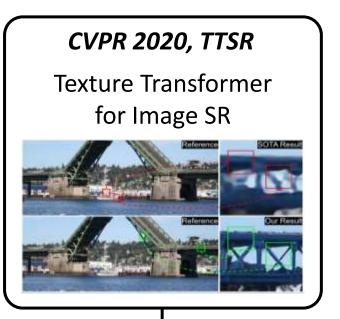
Transformer in Low-Level Vision



Transformer in Low-Level Vision



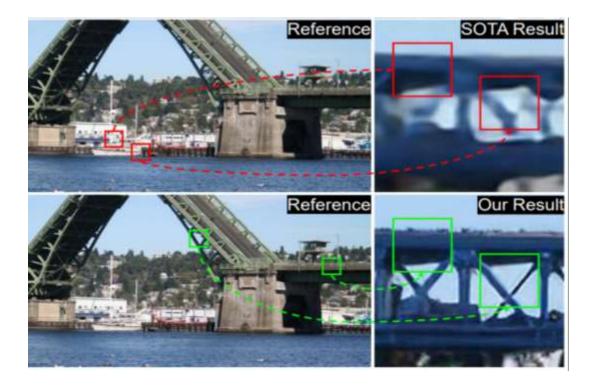
Transformer for Super-Resolution



+0.85db SRNTT

Challenges in Image SR

- The high-frequency texture is hard to be recovered from the LR image itself. Even with some powerful networks and adversarial training, the results still suffer from unrealistic artifacts.
- Introducing external high-quality images as references has shown great potential for image superresolution.



Internal Texture Recovery \rightarrow External Texture Transfer

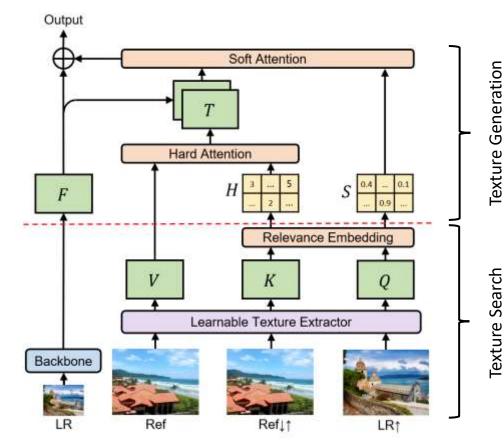
Texture-Transformer for RefSR

• Texture Search: learn a joint texture feature embedding for image super-resolution

$$f_{LR} = \phi_{LTE_{\theta}}(LR), f_{Ref} = \phi_{LTE_{\theta}}(Ref)$$
$$r_{i,j} = \prod_{l} \left\langle \frac{f_{LR_{l}}^{i}}{|f_{LR_{l}}^{i}|}, \frac{f_{Ref_{l}}^{j}}{|f_{Ref_{l}}^{j}|} \right\rangle$$

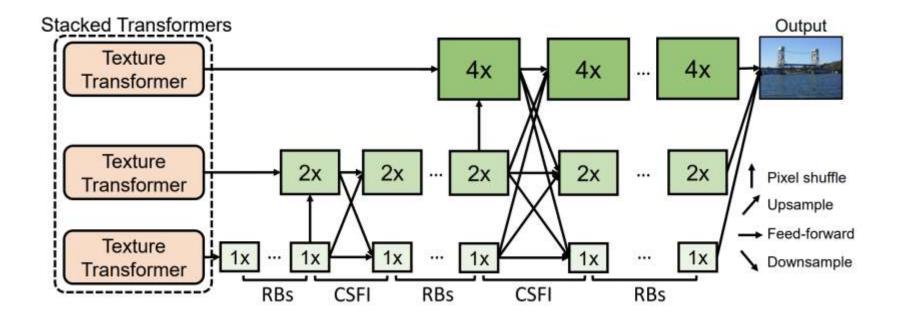
• Texture Generation: encourage relevant texture transfer and avoid wrong texture through a multi-attentional generator

$$h_i = \arg\max_j r_{i,j}, \ s_i = \max_j r_{i,j}, \ f_T^i = f_{Ref}^{h_i}$$
$$f = f + Conv(Concate(f, f_T)) \odot S$$



Texture-Transformer for RefSR

• We proposed a cross-scale feature integration (CSFI) module to stack more Transformer blocks.

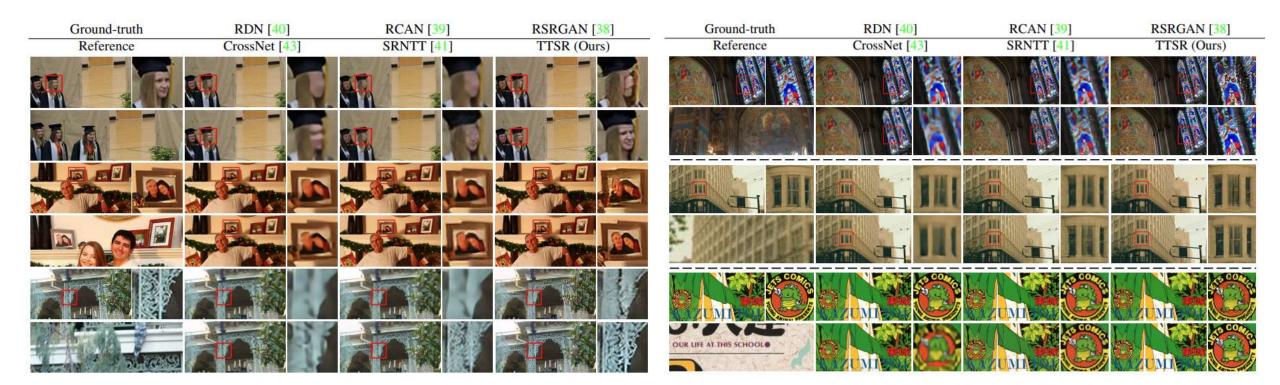


Performance

• Our method significant outperforms existing SISR and RefSR methods by a large margin.

			-	
Method	CUFED5	Sun80	Urban100	Manga109
SRCNN [3]	25.33 / .745	28.26 / .781	24.41 / .738	27.12 / .850
MDSR [17]	25.93 / .777	28.52 / .792	25.51 / .783	28.93 / .891
RDN [40]	25.95 / .769	29.63 / .806	25.38 / .768	29.24 / .894
RCAN [39]	26.06 / .769	29.86 / .810	25.42/.768	29.38 / .895
SRGAN [16]	24.40 / .702	26.76/.725	24.07 / .729	25.12 / .802
ENet [22]	24.24 / .695	26.24 / .702	23.63 / .711	25.25 / .802
ESRGAN [32]	21.90 / .633	24.18 / .651	20.91 / .620	23.53 / .797
RSRGAN [38]	22.31 / .635	25.60 / .667	21.47 / .624	25.04 / .803
CrossNet [43]	25.48 / .764	28.52 / .793	25.11/.764	23.36 / .741
SRNTT-rec [41]	26.24 / .784	28.54 / .793	25.50 / .783	28.95 / .885
SRNTT [41]	25.61 / .764	27.59 / .756	25.09 / .774	27.54 / .862
TTSR-rec	27.09 / .804	30.02 / .814	25.87 / .784	30.09 / .907
TTSR	25.53 / .765	28.59 / .774	24.62 / .747	28.70 / .886

Visual Results



More Results

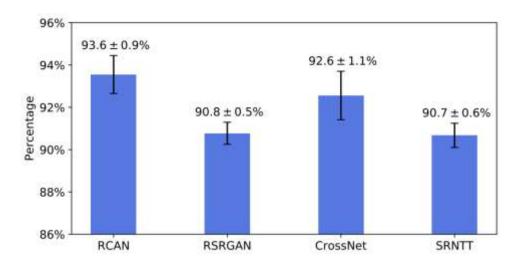
• Ablation for Texture Transformer

Method	HA	SA	LTE	PSNR/SSIM
Base				26.34 / .780
Base+HA	1			26.59 / .786
Base+HA+SA	1	\checkmark		26.81 / .795
Base+HA+SA+LTE	\checkmark	\checkmark	\checkmark	26.92 / .797

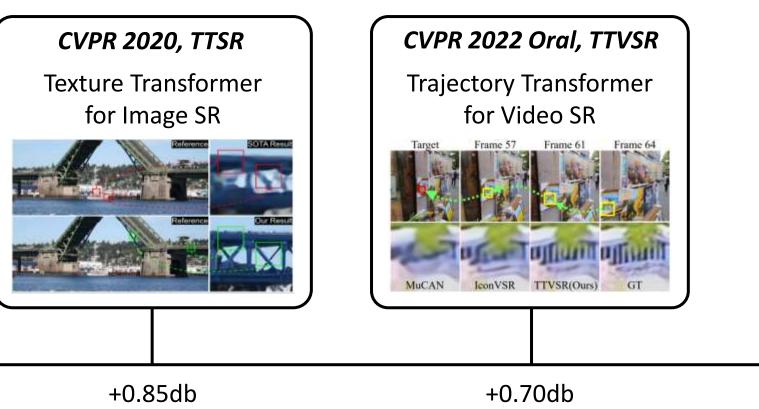
Ablation for Cross-Scale Learning

Method	CSFI	numC	param.	PSNR/SSIM
Base+TT		64	4.42M	26.92 / .797
Base+TT+CSFI	\checkmark	64	6.42M	27.09 / .804
Base+TT(C80)		80	6.53M	26.93 / .797
Base+TT(C96)		96	9.10M	26.98 / .799

• User Study



Transformer for Super-Resolution

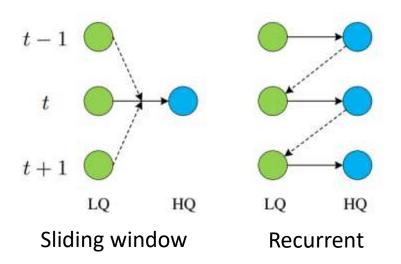


SRNTT

BasicVSR

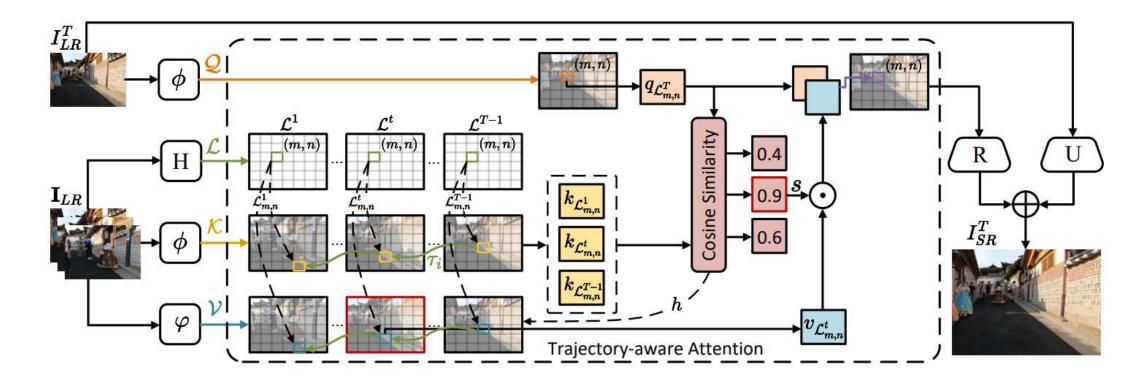
Challenges in Video SR

- The core challenge in VSR is how to leverage temporal information.
 Sliding window-based methods aggregate adjacent 3 or 5 frames for the reconstruction. Recurrent based methods maintain a hidden state for temporal information.
- Is it possible to have a more efficient way to directly leverage longrange (> 10 frames) temporal information?



Trajectory-Aware Transformer for VSR

• We are the first that propose to leverage temporal information of visual tokens **only along its motion trajectory** inside a Transformer.



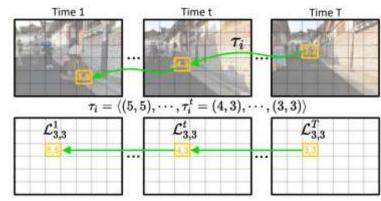
Trajectory-Aware Attention

Attention Mechanism

$$h_{\tau_{i}} = \arg\max_{t} \langle \frac{q_{\tau_{i}^{T}}}{\| q_{\tau_{i}^{T}} \|_{2}^{2}}, \frac{k_{\tau_{i}^{t}}}{\| k_{\tau_{i}^{t}} \|_{2}^{2}} \rangle,$$
$$s_{\tau_{i}} = \max_{t} \langle \frac{q_{\tau_{i}^{T}}}{\| q_{\tau_{i}^{T}} \|_{2}^{2}}, \frac{k_{\tau_{i}^{t}}}{\| k_{\tau_{i}^{t}} \|_{2}^{2}} \rangle.$$

$$\mathbf{A}_{traj}(q_{\tau_i^T}, k_{\tau_i}, v_{\tau_i}) = \mathbf{C}(q_{\tau_i^T}, s_{\tau_i} \odot v_{\tau_i^{h_{\tau_i}}})$$

• Location Map for Trajectory Generation



$$\mathcal{L}_{m,n}^t = \tau_i^t$$
, where $\tau_i^T = (m, n), \ i \in [1, N]$

$$^*\mathcal{L}^t = \mathbf{S}(\mathcal{L}^t, O^{T+1}),$$

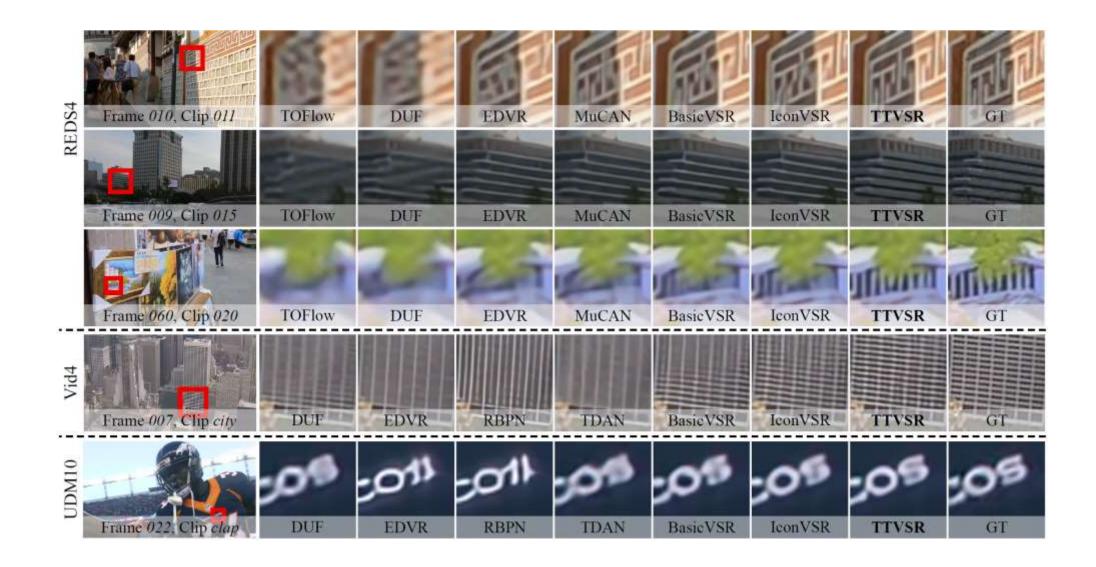
Reduce the computational cost from $(T \cdot \frac{H}{D_h} \cdot \frac{W}{D_w}) \cdot (C \cdot D_h \cdot D_w)$ to $(T \cdot 1 \cdot 1) \cdot (C \cdot D_h \cdot D_w)$

Performance

• Our proposed TTVSR significantly outperforms the latest SOTA BasicVSR/IconVSR by 0.70db/0.45db.

Method	#Frame	Clip_000	Clip_011	Clip_015	Clip_020	Average
Bicubic	1	24.55/0.6489	26.06/0.7261	28.52/0.8034	25.41/0.7386	26.14/0.7292
RCAN [51]	1	26.17/0.7371	29.34/0.8255	31.85/0.8881	27.74/0.8293	28.78/0.8200
CSNLN [29]	1	26.17/0.7379	29.46/0.8260	32.00/0.8890	27.69/0.8253	28.83/0.8196
TOFlow [43]	7	26.52/0.7540	27.80/0.7858	30.67/0.8609	26.92/0.7953	27.98/0.7990
DUF [17]	7	27.30/0.7937	28.38/0.8056	31.55/0.8846	27.30/0.8164	28.63/0.8251
EDVR [40]	7	28.01/0.8250	32.17/0.8864	34.06/0.9206	30.09/0.8881	31.09/0.8800
MuCAN [24]	5	27.99/0.8219	31.84/0.8801	33.90/0.9170	29.78/0.8811	30.88/0.8750
VSR-T [2]	5	28.06/0.8267	32.28/0.8883	34.15/0.9199	30.26/0.8912	31.19/0.8815
BasicVSR [4]	r	28.39/0.8429	32.46/0.8975	34.22/0.9237	30.60/0.8996	31.42/0.8909
IconVSR [4]	r	28.55/0.8478	32.89/0.9024	34.54/0.9270	30.80/0.9033	31.67/0.8948
TTVSR	r	28.82/0.8566	33.47/0.9100	35.01/0.9325	31.17/0.9094	32.12/0.9021

Static Visual Results



Dynamic Visual Results

More Results

• Ablation for Frame Number

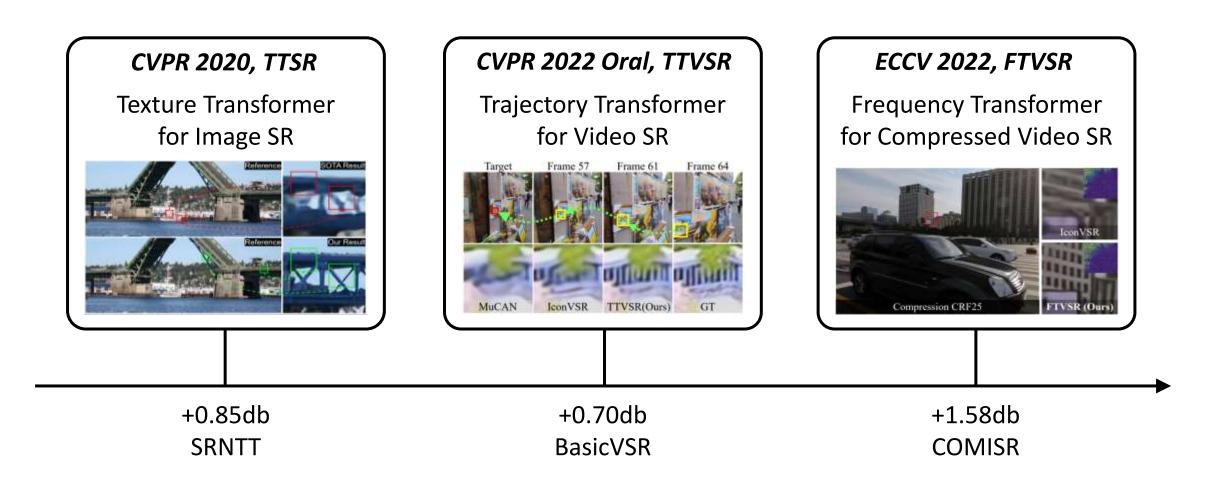
#Frame	5	10	20	33	45
PSNR	31.89	31.93	31.97	31.99	32.01
SSIM	0.8984	0.8994	0.9005	0.9007	0.9004

• Params, FLOPs, and Latency

Method	#Params(M)	FLOPs(T)	PSNR/SSIM
DUF [17]	5.8	2.34	28.63/0.8251
RBPN [11]	12.2	8.51	30.09/0.8590
EDVR [40]	20.6	2.95	31.09/0.8800
MuCAN [24]	13.6	>1.07	30.88/0.8750
BasicVSR [4]	6.3	0.33	31.42/0.8909
IconVSR [4]	8.7	0.51	31.67/0.8948
TTVSR	6.8	0.61	32.12/0.9021

Method	#Params	Runtime
Flow Estimator	1.4M	11ms
Feature Extraction	0.4M	3ms
Cross-scale Feature Tokenization	0.0M	8ms
Trajectory-aware Attention	0.1M	114ms
Reconstruction Network	4.8M	72ms
TTVSR Total	6.7M	203ms
MuCAN [24]	13.6M	1,202ms
BasicVSR [4]	6.3M	63ms
IconVSR [4]	8.7M	70ms

Transformer for Super-Resolution

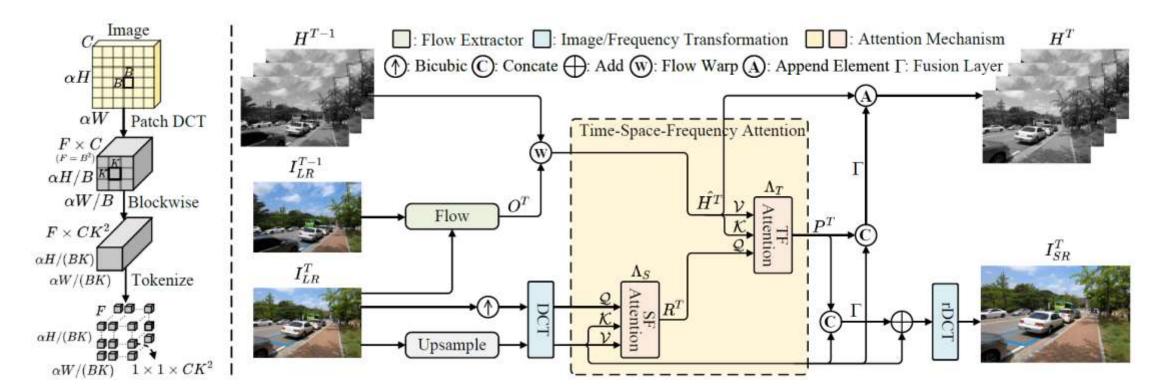


Challenges in Compressed Video SR

- It is hard for existing VSR methods to leverage temporal information since it has been significantly damaged during the compression process.
- Considering most of such damages happen in the quantization process in some specific frequency band in the frequency domain.
- Is it possible to directly learn in the frequency domain to effectively distinguish content and compression artifacts from compressed video frames?

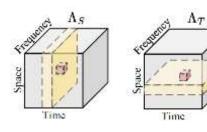
Frequency Transformer for CVSR

 We are the first that propose to learn super-resolution on compressed videos in the frequency domain and further study the attention mechanism between spatial-temporal-frequency dimensions.



Spatial-Temporal-Frequency Attention

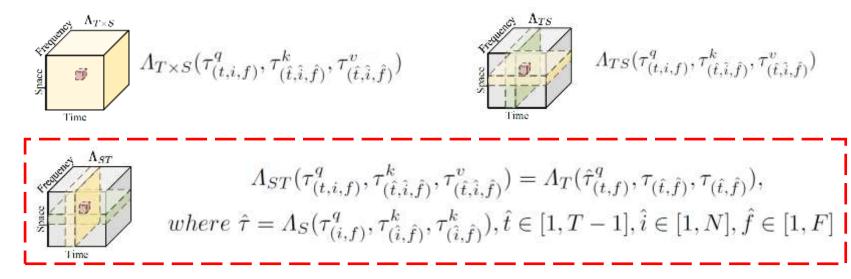
Space/Time-Frequency Attention



 $\begin{array}{c} \overset{\text{def}}{\longrightarrow} & \Lambda_{T} \\ & & \Lambda_{S}(\tau^{q}_{(i,f)}, \tau^{k}_{(\hat{i},\hat{f})}, \tau^{v}_{(\hat{i},\hat{f})}), \hat{i} \in [1,N], \hat{f} \in [1,F] \\ & & \Lambda_{T}(\tau^{q}_{(t,f)}, \tau^{k}_{(\hat{t},\hat{f})}, \tau^{v}_{(\hat{t},\hat{f})}), \hat{t} \in [1,T-1], \hat{f} \in [1,F] \\ & & \text{Time} \end{array}$

 $\mathcal{Q} = \{\tau_{(T,i,f)}^{q}, i \in [1,N], f \in [1,F]\},\$ $\mathcal{K} = \{\tau_{(t,i,f)}^{k}, t \in [1,T-1], i \in [1,N], f \in [1,F]\},\$ $\mathcal{V} = \{\tau_{(t,i,f)}^{v}, t \in [1,T-1], i \in [1,N], f \in [1,F]\},\$

Space-Time-Frequency Attention

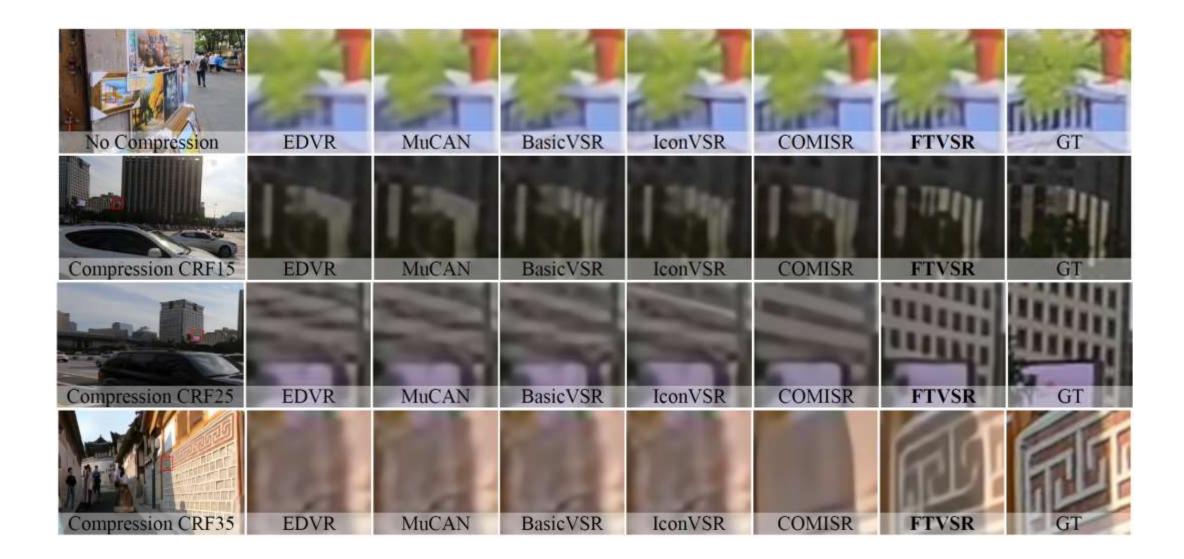


Performance

• Our proposed FTVSR significantly outperforms the latest SOTA COMISR by 1.58db on CRF25.

Method	Per	clip with Cor	npression CR	Average of clips with Compression			
Method	Clip_000	Clip_011	Clip_015	Clip_020	CRF15	CRF25	CRF35
DUF [13]	23.46/0.622	24.02/0.686	25.76/0.773	23.54/0.689	25.61/0.775	24.19/0.692	22.17/0.588
FRVSR [27]	24.25/0.631	25.65/0.687	28.17/0.770	24.79/0.694	27.61/0.784	25.72/0.696	23.22/0.579
EDVR <u>30</u>	24.38/0.629	26.01/0.702	28.30/0.783	25.21/0.708	28.72/0.805	25.98/0.706	23.36/0.600
TecoGan $[3]$	24.01/0.624	25.39/0.682	27.95/0.768	24.48/0.686	26.93/0.768	25.46/0.690	22.95/0.589
RSDN $[12]$	24.04/0.602	25.40/0.673	27.93/0.766	24.54/0.676	27.66/0.768	25.48/0.679	23.03/0.579
MuCAN [18]	24.39/0.628	26.02/0.702	28.25/0.781	25.17/0.707	28.67/0.804	25.96/0.705	23.55/0.600
BasicVSR $[2]$	24.37/0.628	26.01/0.702	28.13/0.777	25.21/0.709	29.05/0.814	25.93/0.704	23.22/0.596
IconVSR [2]	24.35/0.627	26.00/0.702	28.16/0.777	25.22/0.709	29.10/0.816	25.93/0.704	23.22/0.596
COMISR $[20]$	24.76/0.660	26.54/0.722	29.14/0.805	25.44/0.724	28.40/0.809	26.47/0.728	23.56/0.599
FTVSR	26.06/0.703	28.71/0.779	30.17/0.839	27.26/0.782	30.51/0.853	28.05/0.776	24.82/0.657

Static Visual Results



Dynamic Visual Results

More Results

Ablation for Transformer vs CNN

Domain + Backbone	Per	clip with Cor	npression CR	Average of clips with Compression			
Domain + Dackbone	Clip_000	Clip_011	Clip_015	Clip_020	CRF15	CRF25	CRF35
Pixel + CNN	24.37/0.628	26.01/0.702	28.13/0.777	25.21/0.709	29.05/0.814	25.93/0.704	23.22/0.596
Frequency + CNN	24.98/0.666	27.11/0.746	29.36/0.818	26.05/0.751	29.20/0.825	26.87/0.745	23.83/0.629
Frequency + Transformer	25.20/0.684	27.53/0.763	29.47/0.828	26.33/0.766	29.51/0.837	27.15/0.759	24.03/0.644
Frequency + FTVSR	25.26/0.609	27.75/0.766	29.62/0.831	26.47/0.772	29.70/0.843	27.28/0.763	24.22/0.646

• Ablation for Attention Mechanism

Attention	Base	Λ_S	Λ_T	$\Lambda_{T \times S}$	Λ_{TS}	Λ_{ST}
CRF15	29.51/0.837	29.63/0.840	29.60/0.840	29.61/0.839	29.65/0.841	29.70/0.843
CRF25	27.15/0.759	27.23/0.761	27.11/0.760	27.22/0.760	27.24/0.762	27.28/0.763
CRF35	24.03/0.644	24.12/0.646	24.05/0.641	24.11/0.644	24.12/0.645	24.22/0.646

Conclusion

- Similar to Transformer in high-level tasks, it also shows its great power in low-level tasks. However, it may need some adaptation. Directly applying Transformer to low-level vision may cause performance drops.
 - Hybrid network design (CNN + Transformer)
 - Cross-scale feature learning and fusion
 - Carefully designed attention for specific task
- Transformer/Hybrid based models maybe the future of network design for low-level tasks, but currently it has some deployment issues.

Future Works

- Designing more efficient and hardware friendly model for low-level tasks, especially for Transformer/Hybrid-based models.
- Exploring network design for content creation (high-level + low-level), especially for multi-modal diffusion-based generation.

Thanks

Q&A

E-mail: huayan@microsoft.com